Programme de colle n°4

semaine du 6 au 10 octobre

Notions vues en cours

Chapitre 5 – Nombres complexes, en complément du programme précédent

- Exponentielle complexe $e^{i\theta}$ avec $\theta \in \mathbb{R}$, propriétés : $e^{i(\theta+\theta')} = e^{i\theta}e^{i\theta'}$, conjugué et inverse de $e^{i\theta}$, $e^{i\theta} = e^{i\theta'}$ si et seulement si $\theta \equiv \theta'$ [2π]
- Le cercle de centre Ω d'affixe $a \in \mathbb{C}$ et de rayon r > 0 est noté C(a,r). Le disque de centre Ω et de rayon r est noté D(a,r)
- Cercle unité \mathbb{U} : ensemble des complexes de module 1, et ensemble des $e^{i\,\theta}$ avec $\theta\in\mathbb{R}$, stabilité de \mathbb{U} par produit et passage à l'inverse, si $z\in\mathbb{C}^*$ alors $\frac{z}{|z|}\in\mathbb{U}$
- Formules d'Euler et de Moivre, linéarisation de $\cos^n \theta$ ou de $\sin^n \theta$, applications pour des calculs simplifiés d'intégrale ou de dérivée
- Opération inverse de la linéarisation : transformation de $\cos(n\theta)$ ou de $\sin(n\theta)$ en polynôme de $\cos\theta$ et/ou $\sin\theta$
- Forme trigonométrique $z = re^{i\theta}$ pour un complexe z non nul, propriété r = |z|, caractérisation de $re^{i\theta} = r'e^{i\theta'}$, passage de la forme algébrique à la forme trigonométrique et inversement, forme trigonométrique de zz', de $\frac{z}{z'}$ et de z^n en fonction de celles de z et z'
- Argument d'un complexe non nul : définition, propriétés, interprétation géométrique, l'unique argument qui est dans $]-\pi,\pi]$ est appelé argument principal
- Méthode : angle moitié pour factoriser $e^{ia} \pm e^{ib}$, identités trigonométriques de $\cos a \pm \cos b$ et $\sin a \pm \sin b$
- Racine carrée d'un complexe ω : définition, si $\omega \neq 0$ alors il y a deux racines carrées opposées, si $\omega = 0$ il n'y en a qu'une, méthode pour les déterminer (avec ω sous forme algébrique ou trigonométrique)
- Racine(s) et factorisation d'un trinôme du second degré $az^2 + bz + c$ avec a, b, c complexes
- Relations coefficients-racines pour un trinôme du second degré, résolution de systèmes de la forme $\begin{cases} u+v=\dots\\ uv=\dots\end{cases}$
- Racines n-ièmes de l'unité, ensemble \mathbb{U}_n , racine(s) n-ième d'un complexe ω (il y en a n si $\omega \neq 0$, une si $\omega = 0$)
- Exponentielle complexe : définition, propriétés algébriques
- Caractérisation qu'un complexe non nul soit réel, imaginaire pur, etc. en fonction d'un de ses arguments
- Géométrie : si A, B, C sont trois points distincts, l'angle orienté $(\overrightarrow{AB}, \overrightarrow{AC})$ est égal à arg $\left(\frac{z_C z_A}{z_B z_A}\right)$, caractérisation de l'alignement de A, B, C ou de l'orthogonalité de \overrightarrow{AB} et \overrightarrow{AC} en fonction de cet argument.

Les questions de cours sont en page suivante

Questions de cours

Question Flash. Une question de cours sans démonstration choisie par l'examinateur, sur laquelle on doit passer un temps minimal. Cette question est choisie parmi celles ci-dessous, après les questions longues (chapitres 4 à 6).

Question Longue. Sauf mention contraire, les démonstrations sont à connaitre.

- 1. Linéarisation d'un cosinus ou d'un sinus, choisi par l'examinateur Chapitre 6, Méthode page 12
- 2. Calcul des racines carrées ou des racines *n*-ièmes d'un ou deux complexes donnés par l'examinateur. Chapitre 6, Méthode p. 18 et application du Théorème 6.35
- 3. Révision de tout le cours depuis le début de l'année pour se préparer au DS : six questions Flash portant sur les chapitres 1 à 6, en plus de la question Flash prévue normalement (mais cette dernière ne peut porter que sur les chapitres 4 à 6).

Questions Flash au programme:

Chapitre 6:

• Soit z et z' deux complexes et λ un réel. Parmi les formules suivantes, compléter celles qui sont vraies (et seulement celles-là) :

$$\operatorname{Re}(z+z') = \dots$$
 $\operatorname{Im}(zz') = \dots$ $\operatorname{Re}(\lambda z) = \dots$ $\operatorname{Im}(\overline{z}) = \dots$

- Compléter les formules suivantes : $z + \overline{z} = \dots$ et $z \overline{z} = \dots$
- Compléter l'identité remarquable suivante : $|u+v|^2 = \dots$
- À quelle condition sur u et v a-t-on |u+v|=|u|+|v|?
- Donner les deux formules d'Euler.
- À quelle condition est-ce qu'un complexe z admet une forme trigonométrique ? Donner cette forme en précisant dans quels ensembles appartiennent chaque nouvelle variable.
- Mettre sous forme trigonométrique un complexe de la forme a et/ou de la forme $i\,b$ avec a et b deux réels choisis par l'examinateur.
- Si $re^{i\theta} = r'e^{i\theta'}$ (avec $r, r' \in \mathbb{R}_+^*$ et $\theta, \theta' \in \mathbb{R}$), que peut-on en déduire sur r, r', θ, θ' ?
- Combien de racines carrées possède un nombre complexe ω ? Si z est une de ces racines, que peut-on dire?
- On considère le polynôme $az^2 + bz + c$ avec $a, b, c \in \mathbb{C}$. Que vaut la somme de ses racines? et le produit?
- Soit $n \in \mathbb{N}^*$. Quelles sont les racines n-ièmes de l'unité ?
- Soit $z \in \mathbb{C}$. Écrire e^z sous forme trigonométrique.
- Soit $z \in \mathbb{C}^*$. À quelle condition sur $\arg(z)$ a-t-on $z \in \mathbb{R}_+^*$? et $z \in \mathbb{R}^*$?

Chapitre 5:

- Pour cosinus, sinus ou tangente : une formule à compléter parmi les formules de changement de quadran, d'addition, de duplication, au choix de l'examinateur.
- Compléter : $\cos a = \cos b \iff \dots$
- Compléter : $\sin a = \sin b \iff \dots$
- Compléter : $\tan a = \tan b \iff \dots$
- Quel est l'ensemble de définition de la fonction tangente ?

Chapitre 4:

• Compléter les formules $\sum_{k=1}^{n} k = \dots$ et $\sum_{k=1}^{n} k^2 = \dots$

• Compléter la formule $a^n - b^n = \dots$

• Compléter la formule $\sum_{k=0}^{n} x^k = \dots$

• Donner la définition de $\binom{n}{k}$, avec $n \in \mathbb{N}^*$ et $k \in \mathbb{Z}$.

• Énoncer la propriété du triangle de Pascal.

• Compléter la formule $(a+b)^n = ...$

• Compléter : $\sum_{1 \le i \le j \le n} a_{ij} = \sum_{i=\dots}^{\dots} \sum_{j=\dots}^{\dots} a_{ij} = \sum_{j=\dots}^{\dots} \sum_{i=\dots}^{\dots} a_{ij}$

Questions Flash supplémentaires :

Ces questions Flash ne peuvent être posées que dans le cadre de la troisième Question Longue.

Chapitre 3:

• Compléter : $\forall a \in \dots \quad \sqrt{a^2} = \dots$ et $\forall a \in \dots \quad \sqrt{a^2} = \dots$

• Énoncer la première inégalité triangulaire.

• Énoncer la seconde inégalité triangulaire.

• Si $a \le b$, à quelle condition sur a et b peut-on en déduire $a^2 \le b^2$?

• Si $a \leq b$, à quelle condition sur a et b peut-on en déduire $\sqrt{a} \leq \sqrt{b}$?

• Si $a \leq b$, à quelle condition sur a et b peut-on en déduire $\frac{1}{a} \geq \frac{1}{b}$?

• Soit x et y deux réels et k un entier. Parmi les formules suivantes, compléter celles qui sont vraies (et seulement celles-là) :

$$\lfloor x + y \rfloor = \dots \qquad \lfloor x + k \rfloor = \dots \qquad \lfloor 2x \rfloor = \dots$$

Chapitre 2:

 \bullet Quels sont les éléments de $[\![-4,2]\!]$? Et de [-4,2] ?

• Si $(a,b) \in \mathbb{R}_+^* \times [0,2\pi]$, que peut-on dire de a et de b?

• Expliciter l'ensemble $\mathscr{P}(\{1,2\}),$ i.e. l'ensemble des parties de $\{1,2\}.$

• Quelle est la caractérisation de $x \in A \cap B$? de $x \in A \cup B$?

• Compléter les formules suivantes : $\overline{A \cap B} = \dots$ et $\overline{A \cup B} = \dots$

• Sous quelle condition est-ce que des ensembles A_1, \dots, A_n sont-ils disjoints deux à deux ?

• Compléter : les ensembles A_1, \dots, A_n forment une partition de E si A_1, \dots, A_n sont, disjoints deux à deux et si

Chapitre 1:

- \bullet Soit P et Q deux assertions. Donner la négation de " $P \implies Q$ ".
- \bullet Soit P et Q deux assertions. Donner la négation de "P ou $\,Q$ ".
- Soit $n \in \mathbb{Z}$. Donner une caractérisation de "n est impair" en termes de quantificateurs.
- Donner la négation de l'assertion suivante : ... (au choix de l'examinateur).
- \bullet Qu'appelle-t-on la contraposée de l'assertion " $P \implies Q$ " ?
- On souhaite montrer une assertion H_n pour tout $n \in \mathbb{N}$ par récurrence double. Décrire ce qu'il faut démontrer pour l'initalisation et pour l'hérédité.
- Même question que ci-dessus pour la récurrence forte.
- $\bullet\,$ Quel raisonnement utiliseriez-vous pour démontrer que $\sqrt{2}$ n'est pas rationnel ?